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The influence of large-scale outer-region motions on the properties and processes of
the inner layer remains an open issue in wall turbulence research. In the present
work, two-dimensional power spectra of the streamwise component are measured
in streamwise–spanwise planes throughout the logarithmic region of smooth flat-
plate turbulent boundary layers at Reθ = 1015 and 7705. The spectra are based on
PIV measurements with a wide spanwise view (z/δ > 2.5), and the spanwise energy
distribution is emphasized. The spectra reveal that the mode associated with the
spacing of the low-speed streaks near the wall, λ+

z ≈ 100, contains surprisingly little
energy relative to modes in the range λ+

z ≈ 200–400 at y+ = 21. This result is consistent
with measurements in a channel flow (Liu et al. 1996) at a similar height. Further from
the wall, large-scale structures that scale with outer variables organize with spacing
λz/δ =0.75–0.9, and these motions dominate the spanwise distribution of streamwise
energy throughout the logarithmic region. The large spanwise modes are associated
with the large streamwise modes on average, as the median energetic spanwise mode
increases roughly linearly with increasing streamwise mode up to approximately
λz,med/δ ≈ 0.8, and then remains roughly constant for larger streamwise modes. The
aspect ratio λx/λz,med decreases with increasing distance from the wall, suggesting that
the most streaky structures remain buried near the wall.

1. Introduction
It is well known that low- and high-speed streaks exist in the near-wall region of

turbulent wall flows. Previous investigations have typically used flow visualization
to investigate streak spacing and characteristics, including the seminal work of
Kline et al. (1967), who identified the mean spanwise spacing of λ+

z = 100, and
Smith & Metzler (1983), who showed that the spacing has a log-normal distribution
and increases with distance from the wall. (Variables with superscript + are non-
dimensionalized by uτ , the wall friction velocity, and y∗ = ν/uτ , the viscous length
scale, where ν is the kinematic viscosity.) As a result of these and numerous other
studies, the near-wall spanwise streak spacing of λ+

z = 100 is universally accepted, and
generally considered one of the successes of turbulence structure research.

In the outer region, large-scale motions have been documented, though their
spanwise spacing has received less attention than the near-wall structures. At low to
moderate Reynolds number, ‘bulges’ of turbulent fluid have been identified defining
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the boundary-layer edge and extending on the order of δ–2δ streamwise and 0.5δ–
1.0δ spanwise, where δ is the boundary layer thickness (Nychas, Hershey & Brodkey
1973; Kovasznay, Kibens & Blackwelder 1970). More recently, at both low and high
Reynolds number, Adrian, Meinhart & Tomkins (2000) observed groups of vortices
aligning streamwise to create very large regions of u-momentum deficit, which typically
reside in the region extending from the inner layer out to y/δ =0.4–0.6. These results
are consistent with many previous observations of large- and small-scale structure.

A handful of investigations have focused on the spanwise organization and
properties of motions in the logarithmic layer and above. Wark & Nagib (1991) investi-
gated a Reθ =U∞θ/ν =4650 boundary layer (where U∞ is the free-stream velocity and
θ is the momentum thickness) using conditional averaging over the wall-normal range
55 <y+ < 605 and observed ‘roller-type’ structures extending several δ streamwise (x)
and approximately 0.5δ spanwise (z). These motions were associated with Reynolds
stress production, and sweeps and ejections were observed to occur in a ‘quasi-
periodic’ manner spanwise, even in the larger scales. Rajaee, Karlsson & Sirovich
(1995) performed two-point correlations of the wall-normal and streamwise velocity
with spanwise separation in a turbulent channel flow. The authors interpreted the
first minimum in the streamwise velocity correlation Ruu(rz) to be half the streak
spacing, and showed that the spacing grows roughly linearly with distance from
the wall up to y+ ≈ 80. The first minimum in the wall-normal velocity correlation
Rvv(rz) was interpreted to be the vortex diameter. This grew linearly with y up
to y+ =100. Tomkins & Adrian (2003) performed wide-view PIV (particle image
velocimetry) measurements in the streamwise–spanwise plane of a boundary layer at
Reθ = 7705. Horizontal planes of data at y/δ = 0.2 revealed large-scale regions of u-
momentum deficit that were highly elongated in the streamwise direction and bordered
by sequences of concentrated wall-normal vorticity. Regions of high-speed fluid, also
elongated streamwise, typically occupied the gaps between neighbouring areas of
momentum deficit. The observations are consistent with the results of Adrian et al.
(2000) and Wark & Nagib (1991). Recently, del Alamo & Jimenez (2003) performed
direct numerical simulation (DNS) of a turbulent channel at Reτ = uτh/ν = 180 and
550, where 2h is the channel height. The authors calculated two-dimensional spectra
and observed very-large-scale motions that may extend over 5h streamwise and up to
approximately 2h spanwise; velocity correlations suggest that these motions penetrate
down into the buffer layer. del Alamo et al. (2004) analysed DNS results over an
extended range of Reynolds number (up to Reτ = 1900) and focused on scaling
issues. Appropriate scaling parameters for spectra and correlations were not always
consistent with self-similarity: they concluded that the largest streamwise wavelengths
varied as λ2

z and were found to scale with the centreline velocity of the channel.
Scaling studies of two-point correlation functions with spanwise separation are in

general agreement. McLean (1990) performed two-point correlations of streamwise
velocity as a function of wall-normal distance over a significant range of Reynolds
numbers (1500< Reθ < 10 290). The author found that Ruu(rz) scales with outer
variables throughout the boundary layer except for small separations in the region
y+ < 40. Wark, Naguib & Robinson (1991) investigated the behaviour of the
correlation function Rτu(rz), where τ is the streamwise wall shear stress, over the
Reynolds number range 670 <Reθ < 5961. The correlation was found to scale with
outer units for all displacements and wall-normal locations, with the exception of
displacements less than r+

z = 40 very near the wall (y+ ≈ 10–15).
The aim of the present work is to investigate the energy contribution and growth

of these large- and small-scale structures as a function of distance from the wall in
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Reθ = θU∞/ν 1015 7705
Reδ = δU∞/ν 8743 61863
U∞ (m s−1) 1.77 11.39

δ (mm) 76.2 83.1
θ (mm) 8.84 10.35
δ∗ (mm) 12.3 14.4

uτ (m s−1) 0.086 0.41
y∗ (mm) 0.179 0.0375

δ+ 426 2216
H(δ∗/θ ) 1.391 1.391

δ/θ 0.116 0.125

Table 1. Smooth-wall boundary-layer flow parameters.

a zero-pressure-gradient flat-plate turbulent boundary layer at Reθ =1015 and 7705.
Particle image velocimetry (Adrian 1991) measurements are made in streamwise–
spanwise planes at several wall-normal locations (see table 2 below) at each Reynolds
number. The measurements have a wide field of view spanwise to capture a wide
range of modes and a large number of samples for good statistical convergence. The
Reθ = 1015 flow offers a similar value of Reτ = uτδ/ν =426 as the Liu, Adrian &
Hanratty (1996) channel flow in which comparable measurements were performed.
The Reθ = 7705 boundary layer is chosen to match the flow in Adrian et al. (2000). It
contains a significant overlap region (y/δ = 0.2 is equivalent to y+ = 440) and a wide
range of scales (δ+ ≈ 2200).

2. Experiment
Measurements are performed in a low-turbulence open-circuit Eiffel-type wind

tunnel. Flow is drawn in through a series of screens and honeycombs and accelerated
into the test section, in which the free-stream turbulence intensity is estimated to
be 0.16 %. The boundary layer develops over a smooth flat plate with dimensions
6096 mm streamwise (x) by 914 mm spanwise (z); this width is greater than ten times
the boundary-layer thickness so side effects are minimal. The layer is tripped with
a 4.7 mm diameter rod laid flat along the plate at x =110 mm. The centre of the
measurement volume is located at x = 5310 mm from the leading edge. A thorough
description of the facility is given in Meinhart (1994).

Two Reynolds numbers are considered, Reθ =U∞θ/ν = 1015 and 7705. The
experiment is designed to closely match two sets of x–y-plane measurements in
Adrian et al. (2000). Table 1 shows flow parameters for the two cases calculated
from the x–y measurements. The momentum thickness is calculated by numerically
integrating the boundary-layer profile, the wall friction velocity uτ is estimated using
the Clauser (1956) chart method, and the boundary-layer thickness δ is calculated
using the 0.99 criterion.

Two-dimensional velocity measurements are obtained in x–z-planes at several y-
locations using digital PIV. Relevant measurement parameters are summarized in
table 2. Comparison between Reynolds numbers is possible when y/δ is approximately
0.05, 0.1, and 0.2. The experiments are designed to capture a wide field of view,
particularly in the spanwise direction, which extends 6090 viscous wall units in the
high Reynolds number case and 1085 inner units at the low Reynolds number.
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Field of view Field of view Number of
Reθ y+ y/δ Lx/δ × Lz/δ L+

x × L+
z Realizations

1015 21 0.05 1.08 × 2.55 460 × 1085 201
1015 46 0.11 1.08 × 2.55 460 × 1085 201
1015 92 0.22 1.08 × 2.55 460 × 1085 201
7705 100 0.045 1.4 × 2.75 3100 × 6090 201
7705 220 0.10 1.4 × 2.75 3100 × 6090 201
7705 330 0.15 1.4 × 2.75 3100 × 6090 201
7705 440 0.20 1.4 × 2.75 3100 × 6090 201

Table 2. Smooth-wall x–z-plane measurement parameters.

Double-exposed images are captured using two 2k by 2k Kodak Megaplus CCD
cameras set side-by-side, giving a 2:1 spanwise–streamwise view aspect ratio with a
4k by 2k pixel array.

The images are registered mechanically using a calibration target and micro-
adjustments to camera position. Camera alignment is to within 1 pixel out of 2000
vertically, horizontally, and with respect to rotation. Images are combined before
interrogation. To eliminate wide-view distortions the imaging lens is an enlarging lens
placed backwards in the system. Olive-oil particles of nominal 1–2 micron diameter
are illuminated using two Nd:YAG pulsed lasers that produce approximately 150 mJ
per pulse @ 532 nm. The laser beam is spread using negative cylindrical lenses into
a sheet of 130 mm in the test section, crossing the flow in the spanwise direction.
The sheet is focused using a positive spherical lens to a waist near the middle of the
test section; its greatest thickness in the field of view is roughly 0.5 mm. The sheet is
aligned parallel to the boundary-layer plate using alignment blocks with thin grooves
precisely machined at specified heights. Light is scattered from particles through a
glass plate in the test section floor to a 45◦ angled mirror underneath the tunnel,
and collected by the lenses described above. The timing of the lasers and cameras
is controlled by a TSI, Inc. synchronizer box, and the time between pulses is set at
300 µs and 100 µs for the low and high Reynolds number, respectively, resulting in
average particle image displacements in the range 11–15 pixels.

The interrogation is performed using single-frame cross-correlation of double-
exposed images with a discrete window offset specified a priori. The interrogation is
carried out using PIV Sleuth software (Christensen, Soloff & Adrian 2000). Image
shifting is not necessary at these locations in this zero-pressure-gradient layer because
the velocities never approach zero. Slightly rectangular spots are used for the first
window to improve resolution in the spanwise direction (sizes are slightly shorter in
z): 36 by 44 pixels in the low Reynolds number case, and 32 by 40 pixels at the
high Reynolds number. The second window is 64 by 64 pixels in both cases, and
the first window is zero-padded to this size for correlation via FFTs. The second
window is offset to place the correlation peak near the centre of the correlation plane,
and hence remove bias due to edge effects. The particle image diameter dτ is, on
average, 3 pixel diameters, giving dτ/dpix sufficiently large to minimize bias errors due
to image discretization (Adrian 1997; Westerweel 1997). Peak fitting is done using
one-dimensional Gaussian three-point estimation.

This paper is concerned principally with the co-spectral distribution of energy. In
the idealized flow the velocity is statistically homogeneous in the x- and z-directions,
and the two-point spatial correlation function with separation (rx, rz) in the x–z-plane
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is given by

Rij (rx, rz; y) = 〈u′
i(x, y, z, t)u′

j (x + rx, y, z + rz, t)〉. (2.1)

The primes denote velocity fluctuations from the long-term mean velocity,

u′
i = ui − 〈ui〉, (2.2)

and angled brackets denote an average over an infinite ensemble. The co-spectral
power density tensor is defined as

Φij (kx, kz; y) =

∫ ∞

−∞

∫ ∞

−∞
Rije

−j (kxrx+kzrz) drx drz, (2.3)

where kx and kz are the streamwise and spanwise wavenumbers, respectively. The
wavenumber k is related to the wavelength λ by k =2π/λ. The inverse Fourier
transform gives

Rij (rx, rz; y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Φije

j (kxrx+kzrz) dkx dkz, (2.4)

from which the Reynolds stress tensor is obtained as

〈uiuj 〉 =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Φij dkx dkz. (2.5)

Measurements of any of the ideal quantities defined above are always estimates of
the ideal by virtue of a number of real limitations, including finite spatial resolution
and accuracy of the velocity measurements, finite number of realizations in the
statistical ensemble, and finite spatial extent of the measured fields.

The measurement volume in the fluid is determined by the dimensions of the
interrogation spot size in x and z and the light sheet thickness in y. In terms of
viscous wall units the (x,y,z) dimensions of the measurement volume are (14,2.8,11)
at Reθ = 1015 and (60,13,48) at Reθ =7705. The velocity measured by PIV, denoted
by ũi(x, t), is an average over this volume (Adrian 1988). Fifty percent overlap of
interrogation spots yields measurement resolution of 5.6 viscous units in z by 7 viscous
units in x at the low Reynolds number, and 24 viscous units in z by 30 viscous units in
x at the high Reynolds number. Clearly, the resolution is insufficient to resolve all of
the scales of the turbulence. At each Reynolds number, however, the measurements
resolve the structures of interest, while simultaneously capturing large scales. The
above procedure yields approximately 20 000 and 25 000 vectors at the low and high
Reynolds number, respectively. The raw fields are validated by systematic removal of
bad vectors and replacement with 2nd and 3rd choices in the correlation plane where
appropriate. One pass of interpolation given a high percentage of neighbouring valid
measurements is performed, and finally a narrow Gaussian filter is applied to remove
spatial high-frequency noise.

Statistical quantities in the current measurements are calculated by ensemble
averaging over all realizations, and then averaging over the homogeneous z-direction
and the nearly homogeneous x-direction. The average over all realizations is effectively
a time average, and the combined operation of time averaging and spatial averaging
will be denoted by an overbar. The experimental mean velocity ũi closely approximates
the true mean. The fluctuation of the measured velocity is then

ũ′
i = ũi − ũi . (2.6)

There is a subtle point here that bears some discussion. Suppose that one chose
to define the fluctuation by subtracting the spatial mean of each PIV velocity field,
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instead of the combined spatial–temporal mean defined above. Each spatially averaged
mean contains fluctuations due to wavelengths that are greater than the dimensions
(Lx, Lz) of the PIV frame, and wavelengths that are not integer fractions, i.e. nλi = Li .
One can easily visualize the spatial means fluctuating from one temporal sample
to the next as they ride up and down long-wavelength fluctuations. Subtracting the
spatial mean removes the contributions of these long and non-integer wavelengths,
so that the fluctuation is effectively high-pass filtered. Since we are interested in the
contribution of the largest scales, this sort of filtering must be avoided. By taking
the long-time average of the spatial means as our reference, the fluctuations contain
contributions from all wavelengths. We will see later that this means that the spectra
contain information (albeit distorted) down to zero wavenumber, even though the
length of the PIV data domain is finite.

The measured two-point spatial correlation function is denoted by

ˆ̃Rij (rx, rz; y) = ũ′
i(x, y, z, t)ũ′

j (x + rx, y, z + rz, t), (2.7)

where the overbar denotes the aforementioned space–time average, and the carat
emphasizes that (2.7) is only an estimate of the ideal correlation given by (2.1).

Experimentally, the ideal power spectral density functions must be estimated from
a finite set of data realizations measured on a finite spatial domain with finite spatial
resolution. Following conventional practice, we estimate the power spectral density
by Fourier analysing the windowed velocity data from each PIV frame, forming
the product of the Fourier coefficients, and time averaging. Specifically, a Hanning
window function

wH (x ′, z′) =




CH

[
1 − cos2

(
πx ′

Lx

)] [
1 − cos2

(
πz′

Lz

)]
for x � x ′ � x + Lx,

z � z′ � z + Lz

0 otherwise

(2.8)

(with the constant CH adjusted to assure proper energy conservation) is applied to
the velocity data in each PIV frame. The Fourier transform

F [wHũ′
i] =

∫ ∞

−∞

∫ ∞

−∞
e−j (kxx

′+kzz
′)wH (x ′, z′)ũ′

i(x
′, y, z′) dx ′ dz′

=

∫ x+Lx

x

∫ z+Lz

z

e−j (kxx
′+kzz

′)wH (x ′, z′)ũ′
i(x

′, y, z′) dx ′ dz′ (2.9)

is computed by discrete Fourier transform using zero padding to increase the spectral
resolution. The estimate of the co-spectral density tensor is calculated from the
discrete Fourier transforms according to

ˆ̃Φij = F ∗[wHũ′
i]F [wHũ′

j ]. (2.10)

It can be shown by straightforward calculation that the ensemble average of (2.10)
converges to

〈 ˆ̃Φij 〉 =

∫ ∞

−∞

∫ ∞

−∞
dk′

x dk′
zΦ̃ij (kx, y, kz)|F [wH ](kx − k′

x, kz − k′
z)|2 (2.11)

where Φ̃ij is the co-spectral density tensor of ũ, the measured velocity. The estimate
is smoothed by a window function in wavenumber space that is determined by the
Fourier transform of the Hanning window. According to Bendat & Piersol (1986),
the width of the spectral window in ki is approximately 4π/Li , i = 1, 2. Thus, the
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wavenumbers of order of the fundamental, 2π/Li , or less are not well resolved.
Interestingly, (2.11) allows for evaluation of the spectral energy density at wavelengths
longer than Lx or Lz, extending even to infinity. As explained earlier, this is possible
because the fluctuations contain energy from wavelengths greater than the data
domain. However, the smoothing is substantial, so for wavenumbers less than several
times 2π/Li the spectral estimate should be interpreted as a combination of the
energies of neighbouring modes in wavenumber space.

The spectral estimate in (2.11) is attenuated at high wavenumbers by the averaging
over the PIV measurement volume (dimensions Dx × Dz) that is implicit in ũ. The
attenuation in the spanwise direction becomes greater than approximately 60 %
for wavenumbers above k+

z = 21 and 97 for the low and high Reynolds number
case, respectively. The energy attenuation factor due to a simple uniform average in
direction xi is

|H (ki, Di)|2 =
2

(kiDi)2
(1 − cos(kiDi)) , i = x, y, z; no sum on i. (2.12)

These factors have been used to correct for attenuation by dividing the spectral
estimate by appropriate combinations, e.g.

Φ̂ij (kx, y, kz) ∼= ˆ̃Φij (kx, y, kz)/|H (kx, Dx)||H (kz, Dz)|. (2.13)

The attenuation is negligible (i.e. |H |2 is near one) for the low Reynolds number
case except near the largest wavenumbers. Above this wavenumber the spectra are
considered unreliable and omitted. The amount of energy contained in the omitted
range is negligible. In the high Reynolds number case, the attenuation at a given k+

i

is more severe due to the diminished viscous length scale. However, the wavenumber
range of attenuated energy remains well above the wavenumber range of highly
energetic modes due to the shift of energy towards larger-scale motions, in terms
of viscous wall units, as the Reynolds number is increased. (This will be evident in
subsequent figures.)

3. Results and discussion
Figure 1 shows good agreement between the mean streamwise velocity measured

at each height and the mean velocity profile found in Adrian et al. (2000) for each
Reynolds number. Near the logarithmic region all four sets of data converge, as
expected. Root-mean-square streamwise velocity measurements also agree with the
Adrian et al. (2000) results to within 7% and 3 % for the low and high Re, respectively.

Most previous determinations of mean streak spacing have been performed by
flow visualization. Here the mean streak spacing is taken to be the reciprocal of the
average number of streaks per unit width over all realizations at a given height. The
results of this procedure are plotted in figure 2, along with a group of results from
other researchers collected by Kasagi (1988). The present results and the results of
Liu et al. (1996), found by counting low-speed streaks in PIV vector fields, are clearly
consistent with the relatively wide range of data previously observed. As expected,
the streak spacing starts around λ+

z = 100 very near the wall and increases with y. At
y+ =21, the mean spacing is approximately λ+

z = 130–135.
While the collected data obtained through flow visualization are impressively

consistent, it is important to realize that streak identification by eye emphasizes the
smaller scales, due to the characteristics of subjective human perception. The planar
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Figure 1. Mean streamwise velocity for each data set plotted and scaled in outer variables.
Included are profiles from the x–y-plane results of Adrian et al. (AMT 2000).
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Figure 2. Mean spanwise spacing of low-speed streaks as a function of wall-normal location
plotted in inner variables. The spacing is estimated by counting streaks visually. Included are
the channel flow results of Liu et al. (1996), and several other studies originally compiled by
Kasagi (1988).

PIV data, however, allow objective and quantitative analysis via two-dimensional
power spectra of the streamwise velocity in horizontal planes.

3.1. Low Reynolds number spectra

Contours of two-dimensional spectra of the streamwise component are presented in
figure 3 for Reθ = 1015 and 7705. The spectra show that the regions of highest energy
in the streamwise direction are confined to the lowest wavenumbers, revealing the
importance of the largest motions even near the wall. The low Reynolds number
results reveal that in the spanwise direction the most energetic contours are in the
approximate wavelength range λ+

z = 200–400. The mode associated with the spacing
of the low-speed streaks, λ+

z =100, is energetic, but it is clearly not the region of
peak energy. This is consistent with the results of Liu et al. (1996) using film PIV
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Figure 3. Contours of the two-dimensional spectral estimate of the streamwise component,

Φ̂+
uu(k

+
x , y+, k+

z ), as a function of streamwise and spanwise wavenumber, plotted in inner units.
(a) y+ = 21, Reθ = 1015. (b) y+ = 100, Reθ = 7705.

in a turbulent channel. While it is not surprising that the peak energy is located at
wavelengths greater than exactly λ+

z =100 (Kline et al. 1967 found peak energy at
λ+

z = 130), the scale of the energetic modes is surprising (i.e. with significant energy
in the range λ+

z ≈ 200–400). The high Reynolds number results show the energy
distribution further from the wall (y+ = 100). Here the regions of highest energy are
confined to the lowest streamwise and spanwise wavenumbers.

An informative way of viewing two-dimensional spectra is to extract several
‘slices’ of data corresponding to specific streamwise wavenumbers, and observe how
the energy in these particular streamwise modes varies as a function of spanwise
wavenumber. This is done in figure 4, which contains data for both the Liu et al.
channel flow (open symbols) and the low Reynolds number boundary layer (solid
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Figure 4. Pre-multiplied, two-dimensional spectral estimate of the streamwise component
versus spanwise wavenumber for selected streamwise wavelengths at y+ = 21 and Reθ = 1015
(Reτ = 426) (solid symbols). Plotted in inner units. Included are the channel flow results of
Liu et al. (1996), open symbols, at similar streamwise wavelengths and Reynolds number
(Reτ = 400).

symbols) at y+ = 21. Here premultiplied power spectra of the streamwise component
k+

z Φ̂+
uu(k

+
x , y+, k+

z ) are plotted versus spanwise wavenumber, k+
z , for several values of

the streamwise wavelength, λ+
x . Consider the spanwise variation of the streamwise

modes λ+
x = 210. These modes represent higher-wavenumber streamwise motions with

relatively low energy. Their peak energy spanwise is very near λ+
z = 100, but their

overall energy contribution is low. Now consider the streamwise modes λ+
x = 400.

These modes represent larger and more energetic inner-layer streamwise scales. Peak
spanwise energy is in the range λ+

z = 120–150, centred very near the observed
streak spacing of approximately λ+

z = 135 at this height. This is consistent with
the idea that the shorter streamwise modes represent the near-wall structures, and
subsequently reflect the streak spacing more closely. Furthermore, these modes
(and the λ+

x = 210 modes) are in close agreement for both facilities, suggesting
that the near-wall structures are similar. When considering all streamwise modes,
however, it is seen that while λ+

z ≈ 135 is an energetic mode, much more energy
is contained in larger scales, in the range λ+

z = 150–300, for both the channel and
boundary layer. This range is higher than one would expect based on the flow
visualization estimates. The trend for energy to increase with decreasing streamwise
wavenumber is clearly apparent in figure 4. Furthermore, that energy is contained
in increasingly large spanwise modes as streamwise wavelength increases. Hence,
the larger spanwise modes are more energetic when integrating over all streamwise
wavenumbers.

A recent letter by del Alamo & Jimenez (2003) reports similar behaviour in
spectra of a simulated channel flow at Reτ = 550. The authors segregate the
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Figure 5. Cumulative spectral energy normalized by total energy versus spanwise wavelength
plotted in inner units at Reθ = 1015 (Reτ =426). Included are the results of Liu et al. (1996)
(Reτ = 400). Modes greater than the field of view are omitted.

streamwise–spanwise spectra in terms of streamwise scale, and observe a shift of
energy toward larger spanwise modes as streamwise wavelength increases.

The boundary layer and channel differ in the spanwise distribution of energy in the
largest streamwise mode (k+

x = 0). These highly energetic streamwise modes represent
the largest scales, and thus may embody differences in the facility geometry. As seen in
figure 4, differences in the spanwise energy distribution of the large streamwise motions
in the boundary layer and channel persist right down to y+ = 21. Thus, similarity is
observed in the spanwise energy distribution of the near-wall motions, represented by
the higher streamwise wavenumber modes. However, the outer scales influence the
energy distribution of the lower streamwise wavenumber modes, which dominate the
turbulent kinetic energy even close to the wall, preventing universal behaviour over
all scales. Consequently, the total streamwise energy cannot be expected to exhibit
universal behaviour, even in the near-wall region.

The cumulative spectral energy contained within all spanwise modes of wavelength
λ+

z <Λ+
z is obtained by integrating the spectra over all streamwise modes to

obtain one-dimensional spectra in k+
z , and then integrating from k+

z,maximum down
to K+

z = 2π/Λ+
z . This quantity permits one to easily estimate the contribution to the

total streamwise energy from various bands of spanwise modes. The percentage of
cumulative energy in spanwise modes of wavelength less than Λ+

z is plotted in figure 5
for the boundary layer and channel at similar heights. Modes larger than the field of
view are not plotted, though they contribute the necessary energy ( ≈ 5–10 %) to yield
100 % of the total energy as Λ+

z approaches infinity. The energy distributions for
the channel and boundary layer are similar. Most strikingly, the data show that near
the wall (y+ ≈ 21) a significant fraction of the energy, greater than 75 %, is contained
in modes larger than λ+

z = 100. Furthermore, about 65 % of the energy is in modes
greater than the value of λ+

z = 135 estimated by flow visualization. As spanwise scale
increases, the difference between the curves increases, becoming significant for the
large scales. This may again be a manifestation of the differences in the large scales
imposed by the different conditions in the flow facilities.
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Figure 6. Pre-multiplied, two-dimensional spectral estimate of the streamwise component
plotted versus spanwise wavenumber for selected streamwise wavelengths at y/δ ≈ 0.2, plotted
in outer units. The results at Reθ = 1015 (open symbols) and Reθ = 7705 (solid symbols) are
compared.

3.2. High Reynolds number spectra

The higher Reynolds number boundary layer provides a flow with a significant range
of scales (δ+ = 2215) and hence a larger overlap region. Two-dimensional spectra of
the streamwise component are computed at four heights throughout the logarithmic
region of the layer, from y+ =100 (y/δ = 0.045) up to y/δ = 0.2 (y+ = 440).

Previous boundary-layer studies at moderately high Reynolds number (e.g.
Wark & Nagib 1991; Adrian et al. 2000; Tomkins & Adrian 2003) reveal large-
scale, low-momentum streaks in the log-layer and above. These motions may extend
many δ streamwise, and up to approximately 0.5δ–1.0δ spanwise. Measurements at
the outer edge of the logarithmic region provide information about these large-
scale structures. In figure 6, spectra are plotted in a similar fashion to figure 4 at
both Reθ , except, following the correlation results of McLean (1990), outer scaling
is used. The streamwise wavelengths selected range from λx/δ = ∞ (kxδ = 0 mode)
down to λx/δ = 0.5. Note that λx/δ = 1 is close to the largest streamwise wavelength
within the data domain for each Reynolds number. The λx/δ = ∞ mode represents
the contributions of all modes longer than the PIV data domain, which are aliased
into it.

The plot reveals that the locations of the maxima of the spanwise energetic modes at
the top of the log layer are similar for the two Reynolds numbers, in that they are both
centred near λz/δ ≈ 0.8. Spanwise modes near this value are dominant in the largest
streamwise wavelengths in the two-dimensional spectra. These large streamwise scales
are most influential on the total kinetic energy, and thus the spanwise modes near
λz/δ ≈ 0.8 persist to be the peak energetic modes in the one-dimensional kz spectra
(obtained by integrating over all streamwise modes). These λz/δ ≈ 0.8 modes may be
interpreted to represent the average spanwise spacing of the large-scale motions in the
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outer region of the flow. As discussed in Tomkins & Adrian (2003), these motions are
regions of streamwise momentum deficit. Often, high-speed fluid is observed filling
the spaces between neighbouring motions. This large-scale quasi-periodicity is also
observed in Wark & Nagib (1991).

Unlike the spanwise modes of peak energy, a Reynolds number effect does exist in
the distribution of energy among streamwise modes. Figure 6 reveals that streamwise
wavelengths near λx/δ = 0.5 show good agreement in spanwise energy distribution
for the two Reynolds numbers. However, the largest streamwise motions (represented
by the kxδ =0 mode) contain a greater percentage of energy at Reθ = 7705 than
at Reθ = 1015, although that energy is distributed similarly spanwise. At the higher
Reynolds number, then, the energy is more concentrated in the largest streamwise
modes.

Thus, for the outer edge of the logarithmic region, where the largest scales dominate,
a picture emerges in which the large scales at both Reynolds numbers organize and
find an average spanwise spacing. This spacing is revealed as a band of dominant
spanwise energetic modes. How this behaviour changes as the wall is approached is
of obvious interest. One-dimensional spectra in kz at several heights in the log layer
are presented in figure 7. In figure 7(a), the spectra are premultiplied and plotted in
outer units versus the dimensionless spanwise wavenumber kzδ. The spanwise energy
distribution in the outer region (y/δ = 0.2) peaks near λz/δ = 0.8, consistent with the
two-dimensional results in figure 6. This value corresponds to a large wavelength in
wall units, λ+

z = 1900 at Reθ =7705. Interestingly, as the wall is approached, this outer-
region mode continues to contribute dominantly to the turbulent kinetic energy. At
y/δ =0.15, the energy distribution is nearly identical to that at y/δ = 0.2. At y/δ =0.1,
the peak energy shifts slightly towards higher wavenumbers, but still corresponds to
large-scale spanwise motions (λ+

z = 1550, λz/δ = 0.7). The energy in slightly larger
wavenumbers (in the approximate range kzδ > 15) increases. Closest to the wall,
at y/δ = 0.045 (y+ = 100), the presence of the surface becomes apparent. Higher-
wavenumber motions, corresponding to wavelengths in the range λ+

z = 200–600, as
marked, become much more energetic. Nonetheless, the large-scale modes continue
to contribute significantly, and in fact still represent the peak energy. Also marked on
the plot are the spanwise modes approximately corresponding to the structure spacing
estimated by flow visualization at y+ =100, as summarized in figure 2. These modes
are in the range λ+

z = 400–600; they are clearly energetic, but they only represent a
fraction of the most energetic modes on the wavenumber axis. The near-wall streak
spacing mode λ+

z = 100 is also marked. It contains relatively little energy even after
correction for attenuation.

In figure 7(b) the same data are plotted versus kzy, and it is clear from the collapse
of the curves for kzy > 4 that y constitutes the correct length scale for this range
of wavenumbers, i.e. for wavelengths less than λz < 1

2
πy. For longer wavelengths we

have already seen from figure 7(a) that δ is the correct length scale. Thus, the length
scale of the spanwise modes grows with y across the log-layer and then saturates at
a value proportional to δ, much like the usual model of the turbulent mixing length.

Further interpretation may be given to the change in behaviour at y+ = 100 in
figure 7(a). Several researchers have suggested a more restrictive definition of the log
layer (e.g. Osterlund et al. 2000; Zagarola & Smits 1998; McKeon et al. 2004). The
limits of Osterlund et al. (2000), which were developed for boundary layers, are valid
for Reθ > 6000. Here, viscous effects extend further from the wall so that the layer
starts at y+ =200 and continues up to y/δ = 0.15. By this definition, the measurements
at y+ = 100 lay within the ‘extended buffer’ region and not the bottom of the log
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Figure 7. Pre-multiplied, one-dimensional spectral estimate of the streamwise component for
several wall-normal locations at Reθ = 7705. (a) Plotted versus kzδ. (b) Plotted versus kzy.

layer. This interpretation is consistent with the changing character, i.e. the sudden
increase in energy of the moderate to smaller scales, of the y+ = 100 data relative
to the other data sets. The results of Zagarola & Smits (1998) and McKeon et al.
(2004) suggest even more restrictive limits, both in terms of wall-normal location and
Reynolds number, but these are for pipe flow. The present results suggest that the
differences between boundary layers, channels, and pipes may be important as large-
scale motions, which are affected by the geometry of the apparatus, exert influence
near the wall. This is particularly true for boundary layers, as no upper wall exists.
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As discussed in the earlier section, the cumulative spectral energy contained in
spanwise modes up to wavelength Λz may be obtained through integration of the
two-dimensional spectra and plotted against Λz. This is done in figures 8(a) (inner



156 C. D. Tomkins and R. J. Adrian

units) and 8(b) (outer units) for four wall-normal locations at the high Reynolds
number and three wall-normal locations at the low Reynolds number. The cumulative
energy is normalized by total energy in all cases.

The low Reynolds number curves in figure 8(a) (hollow symbols) show that
a relatively small percentage of energy ( ≈ 22 %) is contained in modes whose
wavelengths are less than λ+

z = 100 at y+ = 21, as discussed earlier. As distance
from the wall increases, the energy shifts towards larger scales, as expected, up to
y+ = 92. The high Reynolds number data, however, reveal a dramatic shift in the
energy towards the large scales in plus-units: contrast, for example, the low Reynolds
number curve at y+ = 92 with the high Reynolds number curve at y+ = 100. This
shift is significant, despite the steep initial slope of the y+ = 100 curve relative to the
other high-Re data. This increased slope is a manifestation of the increased energy in
the range λ+

z = 200–600 as seen in figure 7, and might be interpreted as evidence in
favour of the modified log-layer limits of Osterlund et al. (2000). Flow visualization
at this height reveals structure spacing of approximately λ+

z = 500. However, over
70 % of the turbulent kinetic energy is contained in spanwise modes larger than
this. At all heights, over 50 % of the energy is in modes greater than λ+

z = 1000,
with the percentage increasing to over 70 % at the greatest height. Thus, at the high
Reynolds number, the energetic spanwise modes throughout the logarithmic region
are extremely large in terms of viscous wall units.

Normalization by the boundary-layer thickness provides much better collapse of
the data, as seen in figure 8(b), again pointing to the influence of the outer-region
scales. The data at y/δ ≈ 0.1 and 0.2 show Reynolds number similarity for the larger
scales, i.e. in the range Λz/δ > 0.5. For these heights, the curves at different Reθ begin
to diverge for the smaller-scale motions. A greater percentage of energy is observed
in the smaller scales of the high Reynolds number flow; this makes sense, due to
the greater number of viscous wall units corresponding to a given outer length scale.
Closest to the wall (y/δ ≈ 0.05), the results are quite different for the two Reynolds
numbers. The high Reynolds number case contains more energy in the small scales,
e.g. at Λz/δ = 0.1. In interpreting these results, however, it is important to remember
that the low Reynolds number near-wall data correspond to y+ = 21, and λz/δ = 0.1
corresponds to λ+

z = 42. Thus, in the midst of the low-speed streaks, one would not
expect much energy contribution from spanwise modes near λ+

z = 42.
Figure 9 (inset) shows the percentage of energy in spanwise modes λz/δ > 0.5 versus

wall-normal location. At the outer edge of the log layer, 70 % of the energy is in the
large scales at both Reynolds numbers. As the wall is approached (y/δ ≈ 0.1), the
percentage drops to about 58 %. At y/δ ≈ 0.05, the large-scale energy contribution at
the low Reynolds number (y+ =21) is 43 % – still quite substantial. At Reθ = 7705,
the influence of the outer region structures persists. For example, 50 % of the energy
is in scales λz/δ > 0.45; that is, 50 % of the energy is in scales greater than or equal
to 10 times the distance from the wall at y+ = 100.

Figure 4 suggests a trend in which more energy resides in the low spanwise
wavenumber range with increasing streamwise wavelength. Such a trend may be
examined quantitatively by calculating the median spanwise energetic mode λz,med/δ

(the mode over and under which 50 % of the energy resides) for each streamwise mode.
This median spanwise mode is plotted against λx/δ in figure 9 for each y location.
The most obvious trend from the data is an increase in median spanwise mode with
increasing streamwise wavelength at all heights, confirming the correlation between
the scales in x and z. λz,med/δ increases roughly linearly with λx/δ up to λx/δ ≈ 1.0.
Note that the constant of proportionality varies as a function of y, possibly due
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to a lack of streamwise similarity. Interestingly, λz,med/δ begins to level off from
linear growth for λx/δ greater than about one. In the field of view of the figure,
this behaviour is only hinted at, but the limiting values (i.e. those associated with the
kx =0 mode) of λz,med/δ confirm it: all curves asymptote to median modes in the range
0.79 < λz,med/δ < 0.92. Qualitatively similar behaviour, in terms of λz growing with λx

before levelling off, was observed in the spectra of del Alamo & Jimenez (2003). del
Alamo et al. (2004) concluded that for the largest streamwise modes λx grows as√
λz, but the finite streamwise view of the present data does not permit confirmation

of this result. The present results do suggest, however, that energetic modes grow at
similar rates in x and z up λx/δ ≈ 1–2, and above this size they grow mainly in x.

This observation may be interpreted in terms of the large-scale, streamwise-
elongated structures observed previously (e.g. Tomkins & Adrian 2003; Wark &
Nagib 1991) and evident in the instantaneous fields of the present experiment. The
data are consistent with a simple model in which motions grow from the wall in a
roughly self-similar fashion until the large scales are densely distributed spanwise to
fill the layer. At this point, they may continue to grow streamwise, corresponding
to the levelling off observed in figure 9 for the largest scales. It is noteworthy that
the limiting spanwise spacing of the structures roughly corresponds to the dominant
spanwise modes of the outer region, near λz/δ = 0.8.

The concept of vortex packets (see e.g. Head & Bandyopadhyay 1981; Smith 1984;
Adrian et al. 2000) is also useful in interpretation. Briefly stated, these ‘packets’ are
groups of hairpin or cane-like vortices inclined to the wall and aligned streamwise
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that propagate downstream together with little velocity dispersion. In this model, the
legs and head of each vortex rotate to induce a region of low-speed fluid locally.
Due to the streamwise alignment, the vortices work cooperatively to create a region
of low streamwise momentum as long as the packet and as wide as an individual
vortex. This model provides an explanation for the existence of these streamwise-
elongated large-scale motions. Furthermore, through the generation of additional
vortices in the streamwise train, the packet paradigm provides a means by which
the streamwise growth of the large scales may continue despite the spanwise growth
limitations.

A highly idealized schematic interpretation of the energetic motions is presented
in figure 10. Figures 10(a) and 10(b) depict the average growth of several motions
of varying scale embedded within a δ-scale structure. In figure 10(a), the idealized
motions are viewed in the y–z-plane; they are shown growing self-similarly in y and
z, on average, consistent with the results of Tomkins & Adrian (2003). This growth
continues until they reach some critical scale (possibly the scale at which motions fill
the layer spanwise). In figure 10(b), the same set of idealized structures is viewed in the
x–y-plane. Again, the motions grow self-similarly up to this critical point, after which
they continue to grow streamwise. All structures remain rooted to the wall, however,
consistent with the attached-eddy hypothesis (Townsend 1976). The present results do
not speak to the exact nature of the motions, but they are not inconsistent with the
eddy packet model suggested in Tomkins & Adrian (2003) and Adrian et al. (2000).
Part (c) of the figure depicts a series of simplified large motions aligned streamwise.
This concatenation of δ-scale motions is presented as a possible mechanism for
the appearance of very-large-scale streamwise motions in the layer, as observed in
Kim & Adrian (1999).

It is also informative to examine how the structures vary in streamwise and spanwise
size with distance from the wall. For a given λx/δ in figure 9, λz,med/δ increases with
y. Thus, the streamwise/spanwise aspect ratio of structures, λx/λz,med, appears to
decrease with y location, such that the most highly elongated or streaky structures
occur closest to the wall. This is consistent with previous estimates of the aspect ratio
of integral length scales based on correlation measurements Ruu(x, z) as a function of
wall-normal location (Krogstad & Antonia 1994).

The results of Naguib & Wark (1992) are also consistent with the present data.
The authors band-pass filtered hot-wire velocity signals in time to separate the
contributions from motions of different scale, and used correlations of the filtered
signals to determine scaling for each filter. They observed that the energy of outer-
region structures with large streamwise scale increases with Reynolds number in the
range 1579<Reθ < 5961 to ‘overwhelm’ the streamwise velocity fluctuations, even
near the wall. The present data cover a comparable range of Reynolds number, and
here it has been demonstrated that the large spanwise scales dominate the streamwise
energy throughout the logarithmic layer. These two observations are consistent, and
quantitatively linked by the two-dimensional spectra, as presented in figure 9, which
reveal that the large streamwise and spanwise scales are, on average, related.

Another conclusion of Naguib & Wark (1992), however, was that wall-layer eddies
contribute more to the Reynolds stress near the wall than the large streamwise scales,
based on uv estimates with filtered signals. Liu, Adrian & Hanratty (2001) also found
the contribution of the large scales to decrease rapidly in the buffer layer. Above
the buffer layer, however, large-scale motions are associated with Reynolds stress
production. Proper orthogonal decomposition of a turbulent channel flow (Liu et al.
2001) showed that the set of large-scale modes that contributed significantly (50 %)
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Figure 10. Highly idealized schematic depicting average growth of energetic motions in a
boundary layer. (a) Idealized motions of multiple scales embedded within a δ-scale structure,
viewed in the y–z-plane. Average growth in y and z is consistent with the attached-eddy
hypothesis and continues until motions fill the layer spanwise. (b) Same set of idealized
structures viewed in the x–y-plane. Motions grow self-similarly until spanwise growth saturates,
after which streamwise growth continues. (c) Concatenation of multiple idealized δ-scale
motions as a possible mechanism for formation of very-large-scale streamwise motions, viewed
in the x–y-plane.

to the turbulent kinetic energy also contributed 75 % of the Reynolds shear stress
above the buffer layer.

The vortex packet paradigm described in Adrian et al. (2000) again provides
a framework for interpretation of these results. The coherent backwards induction
created by the vortices in a packet forms a very long region of low u-momentum, which
dominates the turbulent kinetic energy; it is considered ‘large-scale’. This coherence
is not present in the vertical component, however, leading to little contribution
to uv from the lowest frequency motions. Close to the wall the Reynolds stress
contribution occurs locally, on a scale associated with an individual wall-layer vortex,
consistent with the results of Naguib & Wark (1992). At the same time, this vortex
is one structure in a train of structures working cooperatively to create a larger-scale
motion (again defined in terms of the streamwise component). Recent results by
Ganapathisubramani, Longmire & Marusic (2003) support this concept. The authors
apply a feature extraction algorithm to stereo PIV measurements in streamwise–
spanwise planes of turbulent boundary layers. In the log region, the algorithm
identifies regions as vortex packets and shows that the contribution of Reynolds
stress per unit area in these regions is 5 to 7 times the average value. Thus, it appears
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that the same set of structures that create the large-scale streamwise motions also
contribute significantly to the Reynolds stress.

4. Conclusions
Large-scale motions leave strong imprints in two-dimensional power spectra of the

streamwise component measured in x–z-planes throughout the logarithmic region
of turbulent boundary layers. Low Reynolds number results (Reθ =1015, Reτ = 426)
reveal that peak spanwise energy resides in scales significantly larger than those
associated with the established low-speed streak spacing, even near the wall: over 75 %
of the energy is in scales larger than λ+

z = 100 at y+ ≈ 21. This result is consistent
with the Reτ =400 channel flow data of Liu et al. (1996). These complementary
experiments measure different flows in separate facilities and are obtained with
independent diagnostic systems, suggesting that these results are both reliable and
universal. While the spanwise energy distribution of the smaller streamwise scales
shows good agreement with visual streak spacing, it is shown that the large streamwise
scales dominate the energy and are associated with larger spanwise scales; hence, the
total spanwise energy peaks at larger scales (λ+

z = 150–300).
Large-scale outer-region structures with spacing λz/δ = 0.75–0.9 are shown to

dominate the turbulent kinetic energy at the top of the logarithmic layer. The range
of spanwise modes associated with these motions is found to be nearly constant
over the Reynolds number range studied (Reθ =1015 to 7705) when scaled with
outer variables. One-dimensional spectra reveal that these motions remain highly
energetic well into the logarithmic region at the high Re; for example, at y+ =100
(y/δ = 0.045), over 50 % of the energy is in modes equal to or greater than ten
times the distance from the wall (λ+

z > 1000). These large-scale structures are the
streamwise-elongated low-momentum regions identified in Tomkins & Adrian (2003)
and observed elsewhere (e.g. Wark & Nagib 1991), and are linked by Guezennec
(1985) to Reynolds stress production.

The large-scale spanwise modes are associated with large-scale streamwise modes
on average. The median spanwise energetic mode increases roughly linearly with
increasing streamwise mode up to approximately λz,med/δ =0.8, and then remains
roughly constant for larger streamwise modes. The aspect ratio λx/λz,med decreases
with increasing distance from the wall.
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